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ABSTRACT content-based systems include MIT's PhotoBook [28], IBM's
QBIC [22], VisualSeek [29] and the Multimedia Datablade from
The fast growth of multimedia information in image and video Infomix/Virage [2].

databases has triggered research on efficient retrieval method
This paper deals with structural queries, a type of content-base
retrieval where similarity is not defined on visual properties such
as color and texture, but on object relations in space. Wfmpe

tnhoet r?gféf:;f”n c?f tihrsglnztcl:l:ufillc?r?;mrgs rvgt]éceqe?r;c;xf; ti?r?gd’ert;g(tj queries ask for a set of objects which satisfy some spatio-temporal
Yy op ' P P 'constraints, e.g., "find all triplets of objects,(¥,vs) such that v

and compare our approach_ with systgmatlc search_ methods Wh.'cri]s northeastof v, which isinside v3" or "find all scenes which
are guaranteed to find optimal solutions but require exponential

time in the worst case. The quality of the output is calculated contain a picture of an island accompanied by a textual
. - : quanty pu . description on itsleft, immediatelyfollowed by a frame that
using a relation framework which is an extension of Allen’'s

relations. With this framework our methods can be applied in containsboth windows". Thus, structural queries pre-suppose an
multiple -resolutions and dimensions. thus covering a W‘i)dpe ran eobject-oriented architecture where pre-processing techniques have

pe re . . : ! . 9 %heen applied to extract information about the objects in a spatial
of applications in spatial, multimedia and video systems.

K d scene and their locations.

eyworas There exist two serious impediments for the efficient processing
MMIR, content-based indexing/retrieval, image indexing/retrieval of configuration similarity. First, the complexity of the problem is,

in general, exponential [25] and systematic search through the

1. INTRODUCTION whole solution space does not guarantee worst case performance.
Effective content-based retrieval of imagery and video can be|n order to avoid this situation, most researchers [16][23] focus on
performed at three abstraction levels [3] [7][15]: a special case where all images/frames contain exactly the same
Raw Data At the lowest abstraction level, objects are simply Set of labeled objects. Here we take a different approach and deal
aggregations of raw pixels. Comparison between objects orWith the general case (i.e., we do not make any assumptions about
regions is done on a pixel-by-pixel basis using similarity measuresdata size and type of objects) by applying some non-systematic
such as the correlation coefficient and the euclidean distance. ~ Search heuristics which provide sub-optimal solutions in limited
time.

2‘—|ere we deal with a form of content-based retrieval that can be
applied at the feature and semantic level, and is based on
configuration similarity and spatio-temporal structure. The

correspondingstructural (or, otherwise calledconfiguratior)

Feature A feature is a distinguishing primitive characteristic or
attribute (e.g., luminance, shape descriptor, gray scale texture,The second impediment for structural queries is that, due to the
color histogram, and spatial frequency). inherent uncertainty in spatio-temporal relations, queries do not
always have exact matches. Like text information retrieval

fsezrt]l?ggchgt/éhgegr?h?iagjtgzglcr):e;\nliil’ fL?tggyzt:?:én::rggi;techniques, the output should have an associated score to indicate
group 9 ) fts similarity to the input query. In order to provide a general

des_c_rlptlo_ns have bt_aen attached to scenes. Sea_rch Is performed c%\rﬂ)plication-independent solution for configuration similarity
entities with well defined spatio-temporal properties.

retrieval, we use a relation framework which can be easily
For instance, a simple object is a connected region of raw pixelsextended to multiple resolutions and dimensions. Different users,
(at the lowest abstraction level), or where selected features areeven in the same system, may employ different sets of relations;
homogeneous (e.g., texture) at the second level, or with distinctthe framework can be adjusted on-the-fly, automatically providing
semantics (e.g. human, building) at the semantic level. Existing similarity measures depending on the resolution.

The rest of the paper is organized as follows: Section 2 describes

In the Proceedings of t122" ACM-SIGIR Conference on Research and  the framework for spatio-temporal structure and the similarity

Development in Information Retriey&erkeley, August 15-19, 1999. measures used. Section 3 employs genetic algorithms for query
processing and section 4 illustrates the application of iterative
improvement and simulated annealing. Section 5 presents the
experimental results comparing the above algorithms with random
and systematic search techniques. Section 6 concludes the paper
with a discussion.



2. CONFIGURATION SIMILARITY directly from their binary string encoding without the need of
Several approaches (see [23] for references) have used Allen's [1POK-Up tables.

relations to assess similarity of spatial scenes. The applicability ofThe above concepts can be extended accordingly to multi-
this framework in actual multi-dimensional systems, however, is dimensional spaces. B-dimensional relation is defined asDa
restricted by its limited expressive power. For instance, Allen’s tuple of 1D projections e.g., Rogooo1100-100000061,V2) implies
relations do not capture the concept of distance; if two intervalsg . 6, v,) for axisx, andRio0000006Va,V2), for axisy. For x

are disjoint, their distance is not important in determining their \ye assume a west-east direction, while fprnorth-south
relative relation. In order to overcome this deficiency, we employ (according to the co-ordinate system used for the computer
a binary string encodingf relations [8] which defines spatio-  screenshots). In order to derive fidegree neighbor of a multi-
temporal relations at various resolution levels providing means for gimensjonal relation we simply replace one of the constituent 1D
the representation of distances and refined topological andprgjections with its neighbors. As a result, computizgelation
direction information. distances is reduced to calculating 1D distances. Time can be

Figure 1 illustrates theonceptual neighborhoograph [11] fora ~ easily incorporated as an extra dimension with the same
distance-enhanced resolution scheme organized according to th&emantics.
binary string encoding (alternative schemes can be found in [8]). The automatic calculation of similarity measures in multiple
A reference interval [a,b] divides 1D space in nine regions (points resolutions and dimensions allows users to ask structural queries
or open intervals) of interest, «¢a9), [ad.ad], (@da), .. by choosing their individual resolution schemes which may
(b+d,), each represented by a bit. The relation between a primarychange for different queries. As an example consider the scheme
interval and [a,b] is then determined according to which of the of Figure 1 and the structural query of Figure 2a. The prototype
regions are intersected; the corresponding bits are set to 1 definingonfiguration is drawn using query-by-sketcHanguage where
a 9-bit string (i.e., a relation). For instanBgggaogaogdenotes that  the distance of the grid is setddd is user-defined). The goal is
the upper (primary) interval is to the left and more thalistance to find configurations of stored objects matching the input exactly
units away from the leftmost point of the lower (reference) or approximately.
interval. Ry10000000iS Similar but implies that the upper interval Formally, a structural query can be described as a binary
ends exactly units before the beginning of the lower one. constraint satisfaction problem [25] which consists of:
The neighborhood graph has the property that the similarity, A set ofn variablesyo,va, ... Vs that appear in the query.
between two relations is proportional to the proximity of the
corresponding nodes. In generadch relatiorR, may have up to X )

st . . values (we assume that all variables have the same domain).
four I degree neighbors, denote@jht(R,), lef(R,), up(R), s - ) -

; - . ; Values can be distinct objects in the case of semantic
dowr(R). Righ(Ry) can be derived fromR, by finding the first retrieval, or pseudo-objects (e.g., regions with a specific
"0" after the rightmost "1" and replacing it by a "1, whig(R,) texture) for retrieval at the feature level.
can be derived fronR, by pumping an "1" from the leffThe
distancebetween two relations is defined as the length of the *
shortest path connecting them in the graph, and can be computed

For each variable;, a finite domainD ={uq,..., uy.¢} of N

For each pair of variables;{), a constrainC; which is a
disjunction of relations from the resolution scheme in use.
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Figure 1 1D conceptual neighborhood graph for a distance-enhanced resolution scheme
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[0J[1]; 001111100.001100000
[1][0]; 000010000 000001100
[0[2]: 000000100 001000000
[2[0]: 001 000000 000000100
\0[3]: 000000100 001000000
[2][0]: 001000000 000000100
[0[4]: 001111100 001000000
[4]00]: 000010000 000000100
[00[5]: 001000000 001000000
[51[0]: 000000100 000000100
[1][2): 000000100 001000000
12][1]: 001000000 000000100
[1][3]; 00000700.001 000000
[ 001000000 000000100
[1][4]: 001110000 001000000
[4]1]: 000011100 000000100
[1][5]: 001000000 001000000

Given the inconsistency degree of a solution, we define its
similarity f normalized within the range [0,1] in order to maintain
uniformity over various problem sizes:
f=n(n-1)*MD -d
n(n-1)* MD
wheren(n-1) is the set of constraints between distinct variable

pairs (including inverse and unspecified constraints) Midis
the maximum distance in the neighborhood graph; for the

1

[5][1): 000000100 000000100
[2]03): 001100000 001111100
[31(2]: 000001100 000010000
[2]04]: 001000000 000000100
[4][2]: 000000100 001000000
s [2](5]: 001000000 000111100

[5](2]: 000000100 000110000
[3](4]: 001000000 000000100
[4](3]: 000000100 001000000
[3](5]: 001000000 000011100
[51(3]: 000000100 001110000
10 [4](5]: 001000000.001 000000

(a) query (b)constraints
Figure 2 An example structural query

distance-enhanced scherM) is 16 in 1D and 32 for 2D space.

g

If N is the number of domain objects, amthe number of query
variables, the total number of possible solutions is equal to the
number of n-permutations of theN objects: N!/(N-n)!.. Thus,
systematic algorithms (e.g., backtracking), that search through the
whole space, ot guaranteacceptable worst case performance.
In the rest of the paper we deal with an alternative form of
processing where the goal is to retrieve the best possible solutions
The query of Figure 2a contains six variables.(, Vi), one for within a limited time. In this case, heuristic techniques yield, as
every drawn object. The domain of each variable consists of allWe Show in the experimental evaluation, better performance than
objects in the image to be searched for the particular configurationSystematic search. The next section illustrates the application of
(i.e., all domains are identical). Figure 2b illustrates the set of €volutionary methods (i.e., genetic algorithms).

binary constraints between all pairs of variables. For instance, the3 GENETIC ALGORITHMS

relation between query objects (variables)vg) @nd 1 ;) is ) } S )
Roo1111100.001100000Alternatively the query could be expressed by Genetic algorithms (G_A s), introduced in [17], are sear_ch methods
based on the evolutionary concept of natural mutation and the

an extended SQL languaggelectvy,..,vs, from ImageDB,where . . L) . -
Roo1111100.00110008¥0,V2)-.. Linguistic terms may be used instead of survival of the fl_ttest |nd|V|dua_Is. Given a WeII-d_eflned _search
bit-strings e.g.,meets-northv,,v;) instead of Root111100.001100060 space, three different genetic search operaticsedection,
Although the particular query specifies constraints between all r0Ssover and mutation are applied to transform an initial
pairs of variables, in some cases queries magdzenplete(some popl_JIatlon of chromoso_mes with the objective to improve the_lr
constraintanay be unspecified) dndefinite (constraints may be ~ duality. A chromosome is an encoded representation of a feasible
disjunctions of relations). [27] describes a pictorial language for Slution (i-e., in our problem an assignment of each query variable
to an image object). Before the search process starts, a Bet of

the expression of such queries. L ; ST

- ) ) chromosomes (called initial population) is initialized to form the
In addition to content-based retrieval, structural queries can befj gt generation. Then the three genetic search operations are
appl!ed ywth metadata, ie, annotated images. Furthermore, in realtepeatedly applied in order to obtain a population (i.e., a new set
applications some additional unary constraints may appear; thesg solutions) with better characteristics. This new population will
may specify object properties at the feature (eugis red) or  constitute the next generation, at which the GA will perform the
semantic level (e.gy, is a building). Although such constraints  same actions and so on, until a stopping criterion is met. Next we

are easy to handle (provided that the corresponding propertiesjemonstrate genetic configuration similarity algorithfGCSA),
have been extracted), for generality we omit them here and deaby presenting the encoding mechanism and then the selection,

only with binary spatio-temporal ones. crossover and mutation operators.

Once the query is submitted, retrieval algorithms will attempt to gncoding mechanisnEach chromosome is simply an ar@gf n
find instantiations of query variables to stored objects such thatyayes, wherd]i] is the instantiation of variable in solutionS.
the input binary constraints are satisfied to a maximum degree. Athe quality ofS is measured by itfitness f(i.e., its similarity).F
binary instantiation § — uy, v, — u} is exact,if R(uqu) L Cj. If, is the average fitness of a population of chromosomes.

for instance, the constrai@; betweenv; andy; is Rigoooooool
Ri10000000 @nd the relation betweew, and u, is one of these
relations, therG; is exactly matched by the instantiation < uy,

Vi < u}. On the other hand, if the relation betweanand vy, is
Ri11000009 the constraint is only approximately matched; its
inconsistency degred; equals the minimum distance between
Ri11000000 @Nd Ryoooo0000 U Rizoooc000  (Which is 1 because
Ri11000000S @ £' degree neighbor d%11000000).

Selection mechanismThis operation consists of two parts:
evaluation of a chromosome and offspring allocation. Evaluation
is performed by measuring the above defined fitness value;
offspring generation is then done by allocating éach
chromosome, a number of offspring proportional to its fitness.
GCSA implements thestochastic remainder techniqu&0]: a
chromosome is assigned offspring according to the integer part of
the proportionate fitnes§F) value in a deterministic way and the

fractional parts are put in a roulette Whleébr determining the
The inconsistency degrekof a completesolutionS={vy « Uuj, ..,
VieUq ., ViU, .., VoaeU} is defined as the sum of
inconsistency degrees of all binary constraints:

d= d; (Ci, R(uk,u))  wherglvi « U, Vi « U}

Oij, i#jandOs<i, j<n

! Roulette wheel selectiailocates a sector of the wheel equal to
21t/F to every chromosome and then creates an offspring if a
generated number in the range of 0 mfalls inside the assigned
sector of the chromosome.



remaining offspring. Thus, we restrict randomness to the
fractional parts only and assure that a good chromosome will not
vanish, which is possible, especially in the early generations.
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Irg r:zg nf;mgl:;t ti%prcc))acrll [&7], 'p;alrs rc])f chromosomes are oilocted & N 5 s -

domly population. Feach pair a crossover point is Soste N
defined randomly, and the chromosomes beyond it are mutually SR S S iy
exchanged, with probability. (crossover ratg producing two 3.§§§§‘2“§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§
new chromosomes. The rationale is that after the exchange of _ %3 gg%g%gg;%gggg;%gﬁ“
genetic materials, the two newly generated chromosomes are very T T 0:§§§3:§§§§§§§§§§§§§§§3:“"
likely to possess the good characteristics of their parents B ‘3§§§§§§§§§§§z 5
(building-block hypothesigl4]). In our case this corresponds to IS <

swapping of the assignments in two solutions after a selected
point. One-point crossover seems to be inefficient for our )
application domain, since the probability of a bit to be swapped With the relatively large value gf. (0.60) GCSA was able to
increases as we go to the end of the string. Instead we selected @Ploit a large portion of the solution space.

two-point crossover mechanism for GCSA: after the pairing of 4 HILL CLIMBING ALGORITHMS

chromosomes, two crossover points are randomly selected and the -
portion of the chromosome in between them is swapped. The'N® rr])robr:em spacr:]e fcl)r structural guerles cagﬁwght of a(ljs a o
whole operation is performed with probabilty. graph, where each so ution copesads to a node aosomate wit

] ] i ) ] ~ a similarity value. Our goal is to find the nodes with the globally
Mutation mechanismMutation aims at I’estorlng lost genetlc maximum Similarity’ |e the best SolutionS. H||| C||mb|ng

material and is performed in GCSA by simply changing a variable a|gorithms operate on such a graph, performing random walks

Figure 3 Parameter tuoing for GCSA

instantiation with a probabilityl, called themutation rate between the nodes based on a certain movement (transition)
Although mutation is not the primary search operation and mechanism. This transition mechanism defines a neighborhood
sometimes is omitted, it may be very useful éaploitation i.e., for eachnode S, which consists of all the nodes that can be

cases where, through selection and crossover, all thereached fronSin one move. In our case, the neighborS afe all
chromosomes have converged to a local optimum for somethe solutions that can be derived frof1by changing the
variable. assignment of a single variable, i.e., a noder{lisl) neighbors

GCSA starts with an initial population &f randomly generated  (each variable can také-1 values, excluding its current
chromosomes/solutions and terminates after the creation and®ssignment). A move is called uphill, if it leads to a better solution
evaluation ofG generations. If only one solution is needed, then and downhill if the destination node has lower similarity.

the best chromosome among all generations is returned. In the .
current problem, however, the user may require the Kest 4.1.Iteratlvellr.nprolvemen.t .
solutions. In this case thedistinct chromosomes are extracted. If Configuration similarity iterative improveme(€Sil) starts with
k<K the algorithm is executed repeatedly with different initial @ randomly chosen initial solution and tries to find a better
populations. There is also the option of specifyirigrget fitness neighbor. If such a solution is found, the current one isacepl
(i.e., retrieve the best solutions where the similarity is greater by the new one, otherwise the algorithm keeps the initial solution.

thantargey, in which case only thie chromosomes that exceed 1N€ process continues until a local maximum is found. This
the target are kept at each run of GCSA. iterative optimization is repeated a number of times, each time

. . ) starting from a different random solution. As in the case of GCSA,
Sevoral theoretlcal_ and empirical studies [9][13][14] have been yne user defines the stopping criterion by specifying the running
carried out on tuning the control parameté?sG, pe and time, or providing the target similarity of the solutions to be
Most researchers suggest that the mutation and the crossover raf@rieved.
should be in the range of 0.001% - 0.05% and 0.60-0.95
respectively. We experimented with these values using variousAs time approximatesco, the probability that iterative
queries; the best results for most cases were achievef,for improvement will find the global maximum approximates 1 [24].
=0.05% andu=0.60. Intuitively, the population sizB should However, given a finite amount of time, the algorithm terminates
increase with the domain size, since a larger population has morét & local maximum. In general, the execution time is proportional
information capacity to provide accurate sampling for the larger to the number of neighbors tested. Exhaustive search of all
domain. Unfortunately very large values cannot be applied in neighboringn(N-1) solutions involves significant cost for large
practice, because this would lin@® which usua”y leads to poor domains. In order to deal with this problem, CSI| searches Only a
results. We experimentally tested the behavior of the algorithm for PercentageRyeig) of the neighbors (a similar approach is taken in

P in the range 50 — 300 by using the queries and datasetd19]). Since the optimal value ®,eigis strongly related to each
described in section 5. specific problem, we tested values ranging from 30% to 80% over

several queries and datasets. In most cd#%gg-60% gives the

Figure 3 shows the fitness of the solution as a functioR afd best results and we use this value in the experimental evaluation.

G. The different values @ do not affect fitness significantly; we
choseP=50 because this valuequiuces fair results for all cases 4 2 Simulated Annealing
and is small enough to allow the individuals to evolve through

; o ) ) - Configuration similarity simulated annealingCSSA) based on
many generations within an acceptahblaning time. Combined

[21][5], performs random walks just like iterative improvement



but in addition to uphill, it also accepts downhill moves with a N!
certain probability, trying to avoid local maxima. Figure 4 |09(P(N,n))=|09EKWH

illustrates CSSA for the case where the user requires thekbest

solutions exceeding the similarity specifiedtayget Solutionsis The logarithm of the number of solutions has also been used in

aKxn array that stores th€ current solutions. the constraint satisfaction literature as a measure of the problem

CSSA(intK, targe? size [6].

S=§; T=Ty/IS is initialized to random solution 5 EXPERIMENTAL EVALUATION

store@); In order to evaluate performance, we constructed five sets of 20

WHILE (not stopping criterion) { queries each using the resolution scheme of Figure 1. The number
WHILE ( not equilibrium) { of variables in each set was fixed to 3, 6, 9, 12 and 15. Query

tightness varied from complete queries (where all pairs of
variables are constrained as in Figure 2) to very loose ones
involving only a few non-restrictive constraints. The valuedof
was set to 1% of the global extent per axis. We used the three 2D

S'=random neighbor &3,
IF (similarity$)>similarity(solutionsk])) AND
(similarityg)>targef) THEN

storgy; datasets in Figure 5; the first one contains randomly generated

Ds = similarity(S) — similarity(S); rectangles according to a uniform distribution, while the second
IFD; >= 0) THENS=S! contains a VLSI circuit, and the third one road segments of
ELSE IF (random([0,1) < &) ) Greece. Notice that the density (sum of all rectangle areas divided

by the workspace) and distribution of the objects significantly

THER= S} affects the performance of algorithms since it determines the

} /lend while quality of solutions. For instance, queries involving constraints
reducet; such averlap insideetc. are more easily satisfied in the second

} //lend while dataset due to its high density. Heuristic search is especially
Figure 4 CSSA sensitive to the number of solutions [6]; if there exist only a few

good solutions (e.g., for some restrictive large queries) it requires
The inner for-loop is calletevel Each level is executed with a a significant amount of time to find them. The above datasets
fixed value of the paramet@&r The starting value of is such that cover a wide range of cardinality values, data densities and
the probability exdd:/T) at the first levels approximates 1, where distributions; thus they provide a good estimation for the
D; denotes the difference between the similarity of the current performance of the algorithms on other domains.

solutionS and the new random neighboring solut®nAfter the
execution of each level, is reduced according to some function,
and the next level is performed using the new valu@&.cfhis
means that the probability of accepting a downhill move is greater
in the earlier levels and decreases in the subsequent ones. CS

terminates when the value ®fis very close to zero and thus the  gimijarity to be retrieved, instantiations are abandoned as soon as
probability of accepting downhill moves is almost 0. Another way e\ cannot lead to solutions of similarity equal or higher than the
for the algorithm to stop is when a fixed criterion is reached; for target; (ii) if the user just wants the beétsolutions with no
example, when a solution with a given target similarity has been gjmijarity threshold, the target is always set as the similarity of the
found. current K™ solution. In this way unsuccessful instantiations are
As with previous algorithms, the quality of the output is strongly rejected early and the search space is pruned effectively. We also
related to the values of some parameters. In order to define theeompare performance with an algorithm (RND) that chooses
initial value T we adopt the method of [20] [21]: a large value for solutions randomly and keeps the best ones. The experiments
To is chosen and a number of transitions is performed. If the were run on a SUN UltraSparc2 (200MHz) with 256MB of RAM.
acceptance ratig, defined as the number of accepted transitions The first set of experiments measures the CPU time in

divided by the number of proposed transitions, is less than a givenyjjjiseconds required to find one solution with similarity above a

value X, (in [21], % = 0.8), To is doubled. This procedure (oqet of 0.7, 0.75 and 0.8. Each execution was allowed 400
continues until the acceptance ratio exceggdsExperimental  so00nds to complete; after this period it was terminated. Figure 5
evaluation suggests thaf= 0.8 and &, equal to the similarity of . ,strates the results for every query size/dataset combination
the initial solut!on, is the best combination for the initial value of (each row corrgmnds to one query size aeech column to one

T. For decreasing the vglue'ﬁfwe apply the common (e.9., [19])  gataset). CSIl and CSSA clearly outperform the other algorithms
decrement ruleTi,, = a* Ty, wherea = 0.95. for all cases, with CSII being the best option. Moreover, these two
The length of the inner while-loop is determined by the algorithms were the only ones to successfully terminate for all
equilibrium condition. For a given value @f an equilibrium is combinations; FC and RND exceeded the time threshold in most
reached if all the neftbors of a solutionS have the same large queries, and their results are omitted from most graphs.
similarity with S, This parameter is, in general, the most RND, in general, outperformed FC; due to its simple
complicated to adjust because it is closely related to the specificimplementation, it checks more instantiations per second than the
problem. We experimented using several queries with variousother algorithms. GCSA had, on the average, slightly better
sizes, over multiple datasets. The following formula provides a performance than RND, but in comparison to CSIl and CSSA it
suitable value for the number of iterations: requires more time to reach a solution above the target similarity.

As a benchmark for systematic search we ueeaard checking

(FC) [18], because it is considered one of the most effective

algorithms for general CSP problems [4], as well as for structural
ueries [26][27]. The current implementation of FC works in a
anch and boundmanner: (i) in case the user inputs a target
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Figure 5 Time (msec) required to retrieve a solution with a given target similarity
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Figure 6 Similarity range of 50 best solutions for pre-determined execution time

The performance of all algorithms degrades as the query sizesolutions retrieved are in a narrow, low similarity range. This is
increases because large queries have, in general, few gooeéxplained by the fact that in restricted time periods, FC will find
solutions and a large part of the space has to be searched befoan area of the search space where some constraints are partially
they are found. The algorithms are most effective in the secondsatisfied (while the rest totally violated) and retrieve all 50
dataset due to the high number of solutions, especially for smallsolutions in this area. Most of these solutions will have the same
queries (notice that RND always finds solutions for target instantiations for the partially satisfied constraints and differ only
similarity 0.7). on the remaining variables.

The next set of experiments measures the similarity of the best 506 CONCLUSIONS

solutions retrieved by the algorithm&=50) as a function of the Thi lies heuristi h algorithms i der t

execution time (50, 100, 150 and 200 seconds). Each diagram in IS paper app Ies heuristic search algori .ms In order 1o proces§
Figure 6 corresponds to a different query size and shows thestruct'ural queries. W.e develop three technlques based on genetic
similarity ranges of all solutions averaged over the three datasetsalgomhms‘ lterative |'mpr0vement and smulated annealing, gnd
of Figure 5. In other words, the lowest (highest) value representscompare them against forward checking, a very effective

e verage of al owes (ighes) sl o ueris of the STl S, SO, o e Seaen Exenone
given size in any dataset. P ' query. '

' that heuristic search is the best way to process configuration
As expected, CSIl and CSSA again outperform the other similarity in cases where a near optimal solution is needed in
algorithms. The greater range of similarity values for CSSA can restricted time.

be explained by the fact that it starts from a random solution, The proposed methods have a wide range of applications in most
which tends to have low similarity and remains in this region, prop . . - 9 PP ;
modern spatial/multimedia database systems, which are

until the temperature is reduced significantly. CSIl also starts increasinaly vector-based. as well as the uocoming image/video
from a solution with low similarity, but very sooeaches a region gy J P 9 9

with high similarity because it accepts only better solutions. compression methods (MPEG4)' For the case of MPEGA4, an
Therefore, it has a better performance for the current problemom]em'oneme‘j compression standard, [12] proposes an extension

because it can reach very quickly a local maximum while SA to the standard’s specifications, in order to support an efficient

- o S . way of indexing video objects. In addition, some query languages
spends the initial stages exploiting low similarity regions. such as Query-by-Sketch [10] and VisualSeek [29] already
GCSA performs better than RND but the quality of retrieved provide facilities for the expression of structural queries.
solutions with respect to CSIl and CSSA drops for large queries
(where the number of good solutions is small). The wide range of
similarities for queries with three variables can be explained by
the fact that if a single instantiation changes (e.g., due to
mutation), it significantly affects (up to 33%) the fitness of the
solution. FC is acceptable only for queries involving three
variables (Figure 6a) where there is enough time to search a goo
part of the solution space. Its performance deteriorates
significantly with the query size; notice that for large queries all

In the future we plan to apply alternative search methods and
combinations. For instance, we could first employ GCSA to find a
set of widely spread solutions with relatively high similarities and
use these solutions as the starting points for CSII. Another
heuristic, which is expected to be very efficient, is based on
((J;onflict minimizationfind the variable whose instantiation results

in the highest degree of inconsistency, and re-assign it so that
fitness is maximized.



Furthermore, in our implementation we don’t use any indexing for Cybernetics, Vol.SMC-16, No.1, pp. 122-128, 1986.

the input datasets. The application of multi-dimensional datapﬂr] Goldberg, D.E. "Genetic Algorithms in Search, Optimization

structures, such as R-trees, may improve the performance o and Machine Learning”. Addison-Wesley, Reading, Mass.,
heuristic search as it does for systematic algorithms [25]. In this 1989

way, the proposed algorithms will be applicable in domains where

the number of objects is very large (e.g> a010). [15] Gupta A., Jain R., *Visual Information Retrieval’.
Communications of ACM, Vol. 40, No. 5, 70-79, May 1997.
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