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ABSTRACT
The fast growth of multimedia information in image and video
databases has triggered research on efficient retrieval methods.
This paper deals with structural queries, a type of content-based
retrieval where similarity is not defined on visual properties such
as color and texture, but on object relations in space. We propose
the application of heuristic algorithms which provide good, but
not necessarily optimal, solutions in a pre-determined time period,
and compare our approach with systematic search methods which
are guaranteed to find optimal solutions but require exponential
time in the worst case. The quality of the output is calculated
using a relation framework which is an extension of Allen’s
relations. With this framework our methods can be applied in
multiple resolutions and dimensions, thus covering a wide range
of applications in spatial, multimedia and video systems.
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1. INTRODUCTION
Effective content-based retrieval of imagery and video can be
performed at three abstraction levels [3] [7][15]:

Raw Data: At the lowest abstraction level, objects are simply
aggregations of raw pixels. Comparison between objects or
regions is done on a pixel-by-pixel basis using similarity measures
such as the correlation coefficient and the euclidean distance.

Feature: A feature is a distinguishing primitive characteristic or
attribute (e.g., luminance, shape descriptor, gray scale texture,
color histogram, and spatial frequency).

Semantic: At the highest abstraction level, retrieval assumes that
features have been grouped into meaningful objects and semantic
descriptions have been attached to scenes. Search is performed on
entities with well defined spatio-temporal properties.

For instance, a simple object is a connected region of raw pixels
(at the lowest abstraction level), or where selected features are
homogeneous (e.g., texture) at the second level, or with distinct
semantics (e.g. human, building) at the semantic level. Existing

content-based systems include MIT's PhotoBook [28], IBM's
QBIC [22], VisualSeek [29] and the Multimedia Datablade from
Infomix/Virage [2].

Here we deal with a form of content-based retrieval that can be
applied at the feature and semantic level, and is based on
configuration similarity and spatio-temporal structure. The
corresponding structural (or, otherwise called, configuration)
queries ask for a set of objects which satisfy some spatio-temporal
constraints, e.g., "find all triplets of objects (v1,v2,v3) such that v1
is northeast of v2 which is inside v3" or "find all scenes which
contain a picture of an island accompanied by a textual
description on its left, immediately followed by a frame that
contains both windows". Thus, structural queries pre-suppose an
object-oriented architecture where pre-processing techniques have
been applied to extract information about the objects in a spatial
scene and their locations.

There exist two serious impediments for the efficient processing
of configuration similarity. First, the complexity of the problem is,
in general, exponential [25] and systematic search through the
whole solution space does not guarantee worst case performance.
In order to avoid this situation, most researchers [16][23] focus on
a special case where all images/frames contain exactly the same
set of labeled objects. Here we take a different approach and deal
with the general case (i.e., we do not make any assumptions about
data size and type of objects) by applying some non-systematic
search heuristics which provide sub-optimal solutions in limited
time.

The second impediment for structural queries is that, due to the
inherent uncertainty in spatio-temporal relations, queries do not
always have exact matches. Like text information retrieval
techniques, the output should have an associated score to indicate
its similarity to the input query. In order to provide a general
application-independent solution for configuration similarity
retrieval, we use a relation framework which can be easily
extended to multiple resolutions and dimensions. Different users,
even in the same system, may employ different sets of relations;
the framework can be adjusted on-the-fly, automatically providing
similarity measures depending on the resolution.

The rest of the paper is organized as follows: Section 2 describes
the framework for spatio-temporal structure and the similarity
measures used. Section 3 employs genetic algorithms for query
processing and section 4 illustrates the application of iterative
improvement and simulated annealing. Section 5 presents the
experimental results comparing the above algorithms with random
and systematic search techniques. Section 6 concludes the paper
with a discussion.
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2. CONFIGURATION SIMILARITY
Several approaches (see [23] for references) have used Allen's [1]
relations to assess similarity of spatial scenes. The applicability of
this framework in actual multi-dimensional systems, however, is
restricted by its limited expressive power. For instance, Allen’s
relations do not capture the concept of distance; if two intervals
are disjoint, their distance is not important in determining their
relative relation. In order to overcome this deficiency, we employ
a binary string encoding of relations [8] which defines spatio-
temporal relations at various resolution levels providing means for
the representation of distances and refined topological and
direction information.

Figure 1 illustrates the conceptual neighborhood graph [11] for a
distance-enhanced resolution scheme organized according to the
binary string encoding (alternative schemes can be found in [8]).
A reference interval [a,b] divides 1D space in nine regions (points
or open intervals) of interest, (-∞,a-δ), [a-δ,a-δ], (a-δ,a), ..,
(b+δ,∞), each represented by a bit. The relation between a primary
interval and [a,b] is then determined according to which of the
regions are intersected; the corresponding bits are set to 1 defining
a 9-bit string (i.e., a relation). For instance, R100000000 denotes that
the upper (primary) interval is to the left and more than δ distance
units away from the leftmost point of the lower (reference)
interval. R110000000 is similar but implies that the upper interval
ends exactly δ units before the beginning of the lower one.

The neighborhood graph has the property that the similarity
between two relations is proportional to the proximity of the
corresponding nodes. In general, each relation Rx may have up to
four 1st degree neighbors, denoted right(Rx), left(Rx), up(Rx),
down(Rx). Right(Rx) can be derived from Rx by finding the first
"0" after the rightmost "1" and replacing it by a "1", while, up(Rx)
can be derived from Rx by pumping an "1" from the left. The
distance between two relations is defined as the length of the
shortest path connecting them in the graph, and can be computed

directly from their binary string encoding without the need of
look-up tables.

The above concepts can be extended accordingly to multi-
dimensional spaces. A D-dimensional relation is defined as a D-
tuple of 1D projections, e.g., R000001100-100000000(v1,v2) implies
R000001100(v1,v2) for axis x, and R100000000(v1,v2), for axis y. For x
we assume a west-east direction, while for y north-south
(according to the co-ordinate system used for the computer
screenshots). In order to derive a 1st degree neighbor of a multi-
dimensional relation we simply replace one of the constituent 1D
projections with its neighbors. As a result, computing D-relation
distances is reduced to calculating 1D distances. Time can be
easily incorporated as an extra dimension with the same
semantics.

The automatic calculation of similarity measures in multiple
resolutions and dimensions allows users to ask structural queries
by choosing their individual resolution schemes which may
change for different queries. As an example consider the scheme
of Figure 1 and the structural query of Figure 2a. The prototype
configuration is drawn using a query-by-sketch language where
the distance of the grid is set to δ (δ is user-defined). The goal is
to find configurations of stored objects matching the input exactly
or approximately.

Formally, a structural query can be described as a binary
constraint satisfaction problem [25] which consists of:

• A set of n variables, v0,v1,…,vn-1 that appear in the query.

• For each variable vi, a finite domain D ={u0,…, uN-1} of N
values (we assume that all variables have the same domain).
Values can be distinct objects in the case of semantic
retrieval, or pseudo-objects (e.g., regions with a specific
texture) for retrieval at the feature level.

• For each pair of variables (vi,vj), a constraint Cij which is a
disjunction of relations from the resolution scheme in use.
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Figure 1 1D conceptual neighborhood graph for a distance-enhanced resolution scheme



The query of Figure 2a contains six variables (v0,…, v5), one for
every drawn object. The domain of each variable consists of all
objects in the image to be searched for the particular configuration
(i.e., all domains are identical). Figure 2b illustrates the set of
binary constraints between all pairs of variables. For instance, the
relation between query objects (variables) 0 (v0) and 1 (v1) is
R001111100-001100000. Alternatively the query could be expressed by
an extended SQL language: select v0,..,v5, from ImageDB, where
R001111100-001100000(v0,v1)... Linguistic terms may be used instead of
bit-strings e.g., meets-north(v0,v1) instead of R001111100-001100000.
Although the particular query specifies constraints between all
pairs of variables, in some cases queries may be incomplete (some
constraints may be unspecified) or indefinite (constraints may be
disjunctions of relations). [27] describes a pictorial language for
the expression of such queries.

In addition to content-based retrieval, structural queries can be
applied with metadata, i.e., annotated images. Furthermore, in real
applications some additional unary constraints may appear; these
may specify object properties at the feature (e.g., v0 is red) or
semantic level (e.g., v1 is a building). Although such constraints
are easy to handle (provided that the corresponding properties
have been extracted), for generality we omit them here and deal
only with binary spatio-temporal ones.

Once the query is submitted, retrieval algorithms will attempt to
find instantiations of query variables to stored objects such that
the input binary constraints are satisfied to a maximum degree. A

binary instantiation {vi←uk, vj←ul} is exact, if R(uk,ul) ⊆ Cij. If,
for instance, the constraint Cij between vi and vj is R100000000 ∨
R110000000 and the relation between uk and ul is one of these

relations, then Cij is exactly matched by the instantiation {vi←uk,

vj←ul}. On the other hand, if the relation between uk and ul is
R111000000, the constraint is only approximately matched; its
inconsistency degree dij equals the minimum distance between
R111000000 and R100000000 ∨ R110000000  (which is 1 because
R111000000 is a 1st degree neighbor of R110000000).

The inconsistency degree d of a complete solution S={v0← up, ..,

vi←uk, .., vj←ul, .., vn-1←ur} is defined as the sum of
inconsistency degrees of all binary constraints:
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Given the inconsistency degree of a solution, we define its
similarity f normalized within the range [0,1] in order to maintain
uniformity over various problem sizes:
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where n(n-1) is the set of constraints between distinct variable
pairs (including inverse and unspecified constraints) and MD is
the maximum distance in the neighborhood graph; for the
distance-enhanced scheme, MD is 16 in 1D and 32 for 2D space.

If N is the number of domain objects, and n the number of query
variables, the total number of possible solutions is equal to the
number of n-permutations of the N objects: N!/(N-n)!. Thus,
systematic algorithms (e.g., backtracking), that search through the
whole space, cannot guarantee acceptable worst case performance.
In the rest of the paper we deal with an alternative form of
processing where the goal is to retrieve the best possible solutions
within a limited time. In this case, heuristic techniques yield, as
we show in the experimental evaluation, better performance than
systematic search. The next section illustrates the application of
evolutionary methods (i.e., genetic algorithms).

3. GENETIC ALGORITHMS
Genetic algorithms (GA’s), introduced in [17], are search methods
based on the evolutionary concept of natural mutation and the
survival of the fittest individuals. Given a well-defined search
space, three different genetic search operations, selection,
crossover and mutation, are applied to transform an initial
population of chromosomes with the objective to improve their
quality. A chromosome is an encoded representation of a feasible
solution (i.e., in our problem an assignment of each query variable
to an image object). Before the search process starts, a set of P
chromosomes (called initial population) is initialized to form the
first generation. Then the three genetic search operations are
repeatedly applied in order to obtain a population (i.e., a new set
of solutions) with better characteristics. This new population will
constitute the next generation, at which the GA will perform the
same actions and so on, until a stopping criterion is met. Next we
demonstrate a genetic configuration similarity algorithm (GCSA),
by presenting the encoding mechanism and then the selection,
crossover and mutation operators.

Encoding mechanism: Each chromosome is simply an array S of n
values, where S[i] is the instantiation of variable vi in solution S.
The quality of S is measured by its fitness f (i.e., its similarity). F
is the average fitness of a population of chromosomes.

Selection mechanism: This operation consists of two parts:
evaluation of a chromosome and offspring allocation. Evaluation
is performed by measuring the above defined fitness value;
offspring generation is then done by allocating to each
chromosome, a number of offspring proportional to its fitness.
GCSA implements the stochastic remainder technique [30]: a
chromosome is assigned offspring according to the integer part of
the proportionate fitness (f/F) value in a deterministic way and the
fractional parts are put in a roulette wheel

1
, for determining the

                                                                
1 Roulette wheel selection allocates a sector of the wheel equal to
2πf/F to every chromosome and then creates an offspring if a
generated number in the range of 0 to 2π, falls inside the assigned
sector of the chromosome.

(a) query (b)constraints
Figure 2 An example structural query



remaining offspring. Thus, we restrict randomness to the
fractional parts only and assure that a good chromosome will not
vanish, which is possible, especially in the early generations.

Crossover mechanism is the driving force of exploration in GA’s.
In the simplest approach [17], pairs of chromosomes are selected
randomly from the population. For each pair a crossover point is
defined randomly, and the chromosomes beyond it are mutually
exchanged, with probability µc (crossover rate), producing two
new chromosomes. The rationale is that after the exchange of
genetic materials, the two newly generated chromosomes are very
likely to possess the good characteristics of their parents
(building-block hypothesis [14]). In our case this corresponds to
swapping of the assignments in two solutions after a selected
point. One-point crossover seems to be inefficient for our
application domain, since the probability of a bit to be swapped
increases as we go to the end of the string. Instead we selected a
two-point crossover mechanism for GCSA: after the pairing of
chromosomes, two crossover points are randomly selected and the
portion of the chromosome in between them is swapped. The
whole operation is performed with probability µc.

Mutation mechanism: Mutation aims at restoring lost genetic
material and is performed in GCSA by simply changing a variable
instantiation with a probability µm, called the mutation rate.
Although mutation is not the primary search operation and
sometimes is omitted, it may be very useful for exploitation, i.e.,
cases where, through selection and crossover, all the
chromosomes have converged to a local optimum for some
variable.

GCSA starts with an initial population of P randomly generated
chromosomes/solutions and terminates after the creation and
evaluation of G generations. If only one solution is needed, then
the best chromosome among all generations is returned. In the
current problem, however, the user may require the best K
solutions. In this case the k distinct chromosomes are extracted. If
k<K the algorithm is executed repeatedly with different initial
populations. There is also the option of specifying a target fitness
(i.e., retrieve the best K solutions where the similarity is greater
than target), in which case only the k chromosomes that exceed
the target are kept at each run of GCSA.

Several theoretical and empirical studies [9][13][14] have been
carried out on tuning the control parameters, P, G, µc and µm.
Most researchers suggest that the mutation and the crossover rate
should be in the range of 0.001% - 0.05% and 0.60-0.95
respectively. We experimented with these values using various
queries; the best results for most cases were achieved for µm

=0.05% and µc=0.60. Intuitively, the population size P should
increase with the domain size, since a larger population has more
information capacity to provide accurate sampling for the larger
domain. Unfortunately very large values cannot be applied in
practice, because this would limit G which usually leads to poor
results. We experimentally tested the behavior of the algorithm for
P in the range 50 – 300 by using the queries and datasets
described in section 5.

Figure 3 shows the fitness of the solution as a function of P and
G. The different values of P do not affect fitness significantly; we
chose P=50 because this value produces fair results for all cases
and is small enough to allow the individuals to evolve through
many generations within an acceptable running time. Combined

with the relatively large value of µc (0.60) GCSA was able to
exploit a large portion of the solution space.

4. HILL CLIMBING ALGORITHMS
The problem space for structural queries can be thought of as a
graph, where each solution corresponds to a node associated with
a similarity value. Our goal is to find the nodes with the globally
maximum similarity, i.e. the best solutions. Hill climbing
algorithms operate on such a graph, performing random walks
between the nodes based on a certain movement (transition)
mechanism. This transition mechanism defines a neighborhood
for each node S, which consists of all the nodes that can be
reached from S in one move. In our case, the neighbors of S are all
the solutions that can be derived from S by changing the
assignment of a single variable, i.e., a node has n(N-1) neighbors
(each variable can take N-1 values, excluding its current
assignment). A move is called uphill, if it leads to a better solution
and downhill if the destination node has lower similarity.

4.1 Iterative Improvement
Configuration similarity iterative improvement (CSII) starts with
a randomly chosen initial solution and tries to find a better
neighbor. If such a solution is found, the current one is replaced
by the new one, otherwise the algorithm keeps the initial solution.
The process continues until a local maximum is found. This
iterative optimization is repeated a number of times, each time
starting from a different random solution. As in the case of GCSA,
the user defines the stopping criterion by specifying the running
time, or providing the target similarity of the solutions to be
retrieved.

As time approximates ∞, the probability that iterative
improvement will find the global maximum approximates 1 [24].
However, given a finite amount of time, the algorithm terminates
at a local maximum. In general, the execution time is proportional
to the number of neighbors tested. Exhaustive search of all
neighboring n(N-1) solutions involves significant cost for large
domains. In order to deal with this problem, CSII searches only a
percentage (Pneig) of the neighbors (a similar approach is taken in
[19]). Since the optimal value of Pneig is strongly related to each
specific problem, we tested values ranging from 30% to 80% over
several queries and datasets. In most cases, Pneig=60% gives the
best results and we use this value in the experimental evaluation.

4.2 Simulated Annealing
Configuration similarity simulated annealing (CSSA), based on
[21][5], performs random walks just like iterative improvement

Figure 3 Parameter tuning for GCSA



but in addition to uphill, it also accepts downhill moves with a
certain probability, trying to avoid local maxima. Figure 4
illustrates CSSA for the case where the user requires the best K
solutions exceeding the similarity specified by target. Solutions is
a Kxn array that stores the K current solutions.

CSSA(int K, target)

S = S0; T = T0;//S is initialized to random solution

store(S);

WHILE (not stopping criterion) {

      WHILE ( not equilibrium) {

          S' = random neighbor of S;

              IF (similarity(S')>similarity(solutions[K])) AND

                       (similarity(S')>target) THEN

                            store(S');

              Df = similarity(S') – similarity(S);

                IF (Df >= 0) THEN S = S';

                                    ELSE  IF (random[0,1) < exp(Df/T) )

                                                       THEN  S = S';

       }   //end while

  reduce T;

} //end while

Figure 4 CSSA

The inner for-loop is called level. Each level is executed with a
fixed value of the parameter T. The starting value of T is such that
the probability exp(Df/T) at the first levels approximates 1, where
Df denotes the difference between the similarity of the current
solution S and the new random neighboring solution S'. After the
execution of each level, T is reduced according to some function,
and the next level is performed using the new value of T. This
means that the probability of accepting a downhill move is greater
in the earlier levels and decreases in the subsequent ones. CSSA
terminates when the value of T is very close to zero and thus the
probability of accepting downhill moves is almost 0. Another way
for the algorithm to stop is when a fixed criterion is reached; for
example, when a solution with a given target similarity has been
found.

As with previous algorithms, the quality of the output is strongly
related to the values of some parameters. In order to define the
initial value T we adopt the method of [20] [21]: a large value for
T0 is chosen and a number of transitions is performed. If the
acceptance ratio x, defined as the number of accepted transitions
divided by the number of proposed transitions, is less than a given
value x0 (in [21], x0 = 0.8), T0 is doubled. This procedure
continues until the acceptance ratio exceeds x0. Experimental
evaluation suggests that x0 = 0.8 and a T0 equal to the similarity of
the initial solution, is the best combination for the initial value of
T. For decreasing the value of T, we apply the common (e.g., [19])
decrement rule: Tk+1 =  a * Tk, where a = 0.95.

The length of the inner while-loop is determined by the
equilibrium condition. For a given value of T, an equilibrium is
reached if all the neighbors of a solution S, have the same
similarity with S.  This parameter is, in general, the most
complicated to adjust because it is closely related to the specific
problem. We experimented using several queries with various
sizes, over multiple datasets. The following formula provides a
suitable value for the number of iterations:
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The logarithm of the number of solutions has also been used in
the constraint satisfaction literature as a measure of the problem
size [6].

5. EXPERIMENTAL EVALUATION
In order to evaluate performance, we constructed five sets of 20
queries each using the resolution scheme of Figure 1. The number
of variables in each set was fixed to 3, 6, 9, 12 and 15. Query
tightness varied from complete queries (where all pairs of
variables are constrained as in Figure 2) to very loose ones
involving only a few non-restrictive constraints. The value of δ
was set to 1% of the global extent per axis. We used the three 2D
datasets in Figure 5; the first one contains randomly generated
rectangles according to a uniform distribution, while the second
contains a VLSI circuit, and the third one road segments of
Greece. Notice that the density (sum of all rectangle areas divided
by the workspace) and distribution of the objects significantly
affects the performance of algorithms since it determines the
quality of solutions. For instance, queries involving constraints
such as overlap, inside etc. are more easily satisfied in the second
dataset due to its high density. Heuristic search is especially
sensitive to the number of solutions [6]; if there exist only a few
good solutions (e.g., for some restrictive large queries) it requires
a significant amount of time to find them. The above datasets
cover a wide range of cardinality values, data densities and
distributions; thus they provide a good estimation for the
performance of the algorithms on other domains.

As a benchmark for systematic search we used forward checking
(FC) [18], because it is considered one of the most effective
algorithms for general CSP problems [4], as well as for structural
queries  [26][27]. The current implementation of FC works in a
branch and bound manner: (i) in case the user inputs a target
similarity to be retrieved, instantiations are abandoned as soon as
they cannot lead to solutions of similarity equal or higher than the
target; (ii) if the user just wants the best K solutions with no
similarity threshold, the target is always set as the similarity of the
current Kth solution. In this way unsuccessful instantiations are
rejected early and  the search space is pruned effectively. We also
compare performance with an algorithm (RND) that chooses
solutions randomly and keeps the best ones. The experiments
were run on a SUN UltraSparc2 (200MHz) with 256MB of RAM.

The first set of experiments measures the CPU time in
milliseconds required to find one solution with similarity above a
target of 0.7, 0.75 and 0.8. Each execution was allowed 400
seconds to complete; after this period it was terminated. Figure 5
illustrates the results for every query size/dataset combination
(each row corresponds to one query size and each column to one
dataset). CSII and CSSA clearly outperform the other algorithms
for all cases, with CSII being the best option. Moreover, these two
algorithms were the only ones to successfully terminate for all
combinations; FC and RND exceeded the time threshold in most
large queries, and their results are omitted from most graphs.
RND, in general, outperformed FC; due to its simple
implementation, it checks more instantiations per second than the
other algorithms. GCSA had, on the average, slightly better
performance than RND, but in comparison to CSII and CSSA it
requires more time to reach a solution above the target similarity.
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Figure 5 Time (msec) required to retrieve a solution with a given target similarity



The performance of all algorithms degrades as the query size
increases because large queries have, in general, few good
solutions and a large part of the space has to be searched before
they are found. The algorithms are most effective in the second
dataset due to the high number of solutions, especially for small
queries (notice that RND always finds solutions for target
similarity 0.7).

The next set of experiments measures the similarity of the best 50
solutions retrieved by the algorithms (K=50) as a function of the
execution time (50, 100, 150 and 200 seconds). Each diagram in
Figure 6 corresponds to a different query size and shows the
similarity ranges of all solutions averaged over the three datasets
of Figure 5. In other words, the lowest (highest) value represents
the average of all lowest (highest) similarities for queries of the
given size in any dataset.

As expected, CSII and CSSA again outperform the other
algorithms. The greater range of similarity values for CSSA can
be explained by the fact that it starts from a random solution,
which tends to have low similarity and remains in this region,
until the temperature is reduced significantly. CSII also starts
from a solution with low similarity, but very soon reaches a region
with high similarity because it accepts only better solutions.
Therefore, it has a better performance for the current problem
because it can reach very quickly a local maximum while SA
spends the initial stages exploiting low similarity regions.

GCSA performs better than RND but the quality of retrieved
solutions with respect to CSII and CSSA drops for large queries
(where the number of good solutions is small). The wide range of
similarities for queries with three variables can be explained by
the fact that if a single instantiation changes (e.g., due to
mutation), it significantly affects (up to 33%) the fitness of the
solution. FC is acceptable only for queries involving three
variables (Figure 6a) where there is enough time to search a good
part of the solution space. Its performance deteriorates
significantly with the query size; notice that for large queries all

solutions retrieved are in a narrow, low similarity range. This is
explained by the fact that in restricted time periods, FC will find
an area of the search space where some constraints are partially
satisfied (while the rest totally violated) and retrieve all 50
solutions in this area. Most of these solutions will have the same
instantiations for the partially satisfied constraints and differ only
on the remaining variables.

6. CONCLUSIONS
This paper applies heuristic search algorithms in order to process
structural queries. We develop three techniques based on genetic
algorithms, iterative improvement and simulated annealing, and
compare them against forward checking, a very effective
systematic search algorithm, and random search. Extensive
experimentation, with various query/dataset combinations, shows
that heuristic search is the best way to process configuration
similarity in cases where a near optimal solution is needed in
restricted time.

The proposed methods have a wide range of applications in most
modern spatial/multimedia database systems, which are
increasingly vector-based, as well as the upcoming image/video
compression methods (MPEG4). For the case of MPEG4, an
object-oriented compression standard, [12] proposes an extension
to the standard’s specifications, in order to support an efficient
way of indexing video objects. In addition, some query languages
such as Query-by-Sketch [10] and VisualSeek [29] already
provide facilities for the expression of structural queries.

In the future we plan to apply alternative search methods and
combinations. For instance, we could first employ GCSA to find a
set of widely spread solutions with relatively high similarities and
use these solutions as the starting points for CSII. Another
heuristic, which is expected to be very efficient, is based on
conflict minimization: find the variable whose instantiation results
in the highest degree of inconsistency, and re-assign it so that
fitness is maximized.
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Figure 6 Similarity range of 50 best solutions for pre-determined execution time



Furthermore, in our implementation we don’t use any indexing for
the input datasets. The application of multi-dimensional data
structures, such as R-trees, may improve the performance of
heuristic search as it does for systematic algorithms [25]. In this
way, the proposed algorithms will be applicable in domains where
the number of objects is very large (e.g., 105 or 106).
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